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Lie group weight multiplicities from conformal field theory 
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Abstract. Dominant-weight multiplicities of simple Lie groups are expressed in terms of 
the modular matrices of Wes&knino-Witten conformal field theories, and related objects. 
Symmetries of the modular matrices give rise to new relations among multiplicities. At least 
for some Lie groups, these new relations are stmng enough to completely fix all multiplicities. 

1. Introduction 

Wess-Zuminc-Witten (wzw) models form an important class of conformal field theories 
(see [l], for example). They realize a current algebra equivalent to an affine Kac-Moody 
algebra. Included as a subalgebra is a semi-simple Lie algebra, the global symmetry algebra 
of the theory. Not surprisingly then, the theory of compact Lie groups and their Lie algebras 
has been very useful in elucidating the properties of wzw models. 

Here we present an example where the reverse is true: wzw conformal field theories tell 
us something useful about Lie groups and their algebras. Weight multiplicities me crucial 
numbers in the representation theory of Lie groups (see [Z, 31, for example). We will express 
the dominant-weight multiplicities of unitary highest-weight representations of Lie groups 
in terms of matrices relevant to wzw models. We also show that our expressions give rise 
to new relations between the multiplicities. 

In order to explain our results, we must first discuss the connection between modular 
transformations and the Lie symmetry algebra of a wzw model. Primary fields of wzw 
models are in one-to-one correspondence with unitary highest-weight representations of 
&ne Kac-Moody algebras 14.51. The partition function of a wzw model on a torus is a 
sesquilinear combination of characters of affine Kac-Moody representations [5]. These 
characters transform among themselves under the action of the modular group of the 
torus [61. Remarhbly, the ratios of elements of the modular S-matrix equal characters 
of the Lie symmetry algebra g evaluated at special points (see equation (3.5) below). This 
happy fact, discovered by Kac and Peterson [6], is the starting point of our work, and has 
been much exploited elsewhere ([7-91, for example). 

Perhaps the relation between modular matrices and semi-simple Lie algebra characters 
is not so surprising, if other facts are taken into account. Consider the number of couplings 
between three primary fields of a wzw model, the so-called fusion coefficient. Since a 
wzw model has a Lie symmetry algebra, this fusion coefficient is less than or equal to 
the corresponding tensor product coefficient of the Lie algebra [5, IO]. Products of Lie 
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algebra characters decompose into integer h e a r  combinations of characters, according to 
these coefficients. Verlinde realized that the modular transformation matrix S of a conformal 
field theory could tell us the fusion coefficients: products of certain ratios of elements of 
the modular matrix S decompose into integer linear combinations of these same ratios, with 
the coefficients being the fusion coefficients 1111. It is reasonable that the only way such 
ratios could satisfy these properties is for them to coincide with the Lie algebra characters, 
but evaluated at special points. 

The outline of this paper is as follows. In section 2 the work of Patera and Sharp [12] is 
reviewed, so that it can be adapted to the use of Kac-Peterson modular matrices in section 3. 
There we write a new expression for the dominant-weight multiplicities of semi-simple Lie 
algebras. The symmetries of the Kac-Peterson modular S-matrix, and the even Weyl sums 
E " )  we introduce in section 3, are written down in section 4. The relations between the 
multiplicities that follow are also given. Section 5 contains some simple explicit examples 
of the new relations between multiplicities, and section 6 is our conclusion. 

2. Lie gmup multiplicities from Lie characters 

Define the Weyl orbit sum 

Here E stands for an even Weyl sum, IWI is the order of the Weyl group of g, and 
IWpI is the order of the Weyl orbit of p E Pt := [C;=opio' lpi  E Z>}. In 
equation (2.1) A E E'++ := (C;=oAio' 14 E Z,}, and p is the half-sum of positive 
roots: p = d, where the ui are the fundamental weights of g. The 
somewhat abusive notation is uw = exp[-ip. U], with U any weight, so that u*uC = bit@. 

u/2 = 

An odd Weyl sum is the so-called discriminant 

&(U) := x d e t ( w ) u W A  
WEW 

where det(w) is the sign of the Weyl group element w. Let H j  be the elements of the Cartan 
subalgebra of g. Weyl's famous character formula for the trace XA(U) of exp[-i E;=, Hjuj ]  
in the representation of highest-weight A - p is 

XA(U) = oA(u)/op(o). (2.3) 

The character, being an even Weyl function, can be expanded in terms of the even functions 
E& [13]: 

(2.4) 

The non-negative integers mA' are the dominant-weight multiplicities: mA" denotes the 
multiplicity of the weight p - p in the representation with highest-weight A - p .  Note 
that mk = 1 for all A E Pit. We can consider the mf to be the elements of an infinite 
matrix M. If 1 - p 6 %>[el,. . . , ur], where ut are the simple roots, then mf = 0. 
Therefore M is a lower triangular matrix, provided the weights are ordered appropriately. 
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Not only can the Weyl character be expanded in terms of the Weyl orbit sums EA, but 
the reverse is also true: 

The coefficients e,, are easily shown to be integers, but are in general not non-negative. 
However if L is the matrix with elements e / ,  then clearly M = L-I. So, if the triangular 
matrix L can be calculated, it is a simple matter to invert it to obtain the dominant-weight 
multiplicities [ 121. 

Patera and Sharp 1121 also point out that the equations above allow the calculation of 
the e/ for fixed h using the Weyl group. This corresponds to the following formula: 

that can be derived from the defining relation for the e.  

3. Lie group multiplicities from wzw modular matricw 

Define 

@)(U) := Fc det(w)u$ = S 2  
W E W  

and 

with 

(3.3) 

where lA+l is the number of positive roots of g, and M here is the weight lattice. The 
matrix Sen) in (3.1) is the Kac-Peterson modular manix of wzw models, corresponding to 
the affine algebra 8 at level k = n - h", where hV is the dual Coxeter number of g. Define 

and P;+ similarly, except with Zg replaced with Z,. The positive integers ay in (3.4) are 
the co-marks [I41 of g. We read from (3.1) that 

(3.5) S*) A 0  / 8 2  = O!"'(U)/Of)(O) =: x:"'(u) 

where 
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This is the 'happy fact' referred to in the introduction. M and L are lower triangular; 
therefore whenever A E P;+. this remarkable relation implies 

and 

(3.7) 

(3.8) 

Equation (3.8) also holds for I E P++ fl P;. Using the unitarity of the modular S-matrix 

we arrive at 

ep = E?)(u) o$%) o$*(u) = E:")(o) s") PO s@)* w (3.10) 
O€P& O€P;+ 

valid whenever both A E P++ fl P; and p E P;+. Equation (3.10) can be generalized to 

(3.11) 

where N f )  are the wzw fusion rules, which we may take to be defined by Verlinde's 
formula [Ill: 

Of course we also get directly from (3.7) that , 

N("b - mA' E(")(u) S(") S(")* 
AP - Y Prr vc ' 

a.Y€P;, 

Because L is lower triangular, a simple argument gives 

(3.13) 

??LAP ( L ( n q W  (3.14) 

for all A,  p E P;+, where L(") is defined to be the sublattice of L obtained by res2icting it 
to the set P;+. Thus equations like (3.10) provide a simple method of calculatine dominant- 
weight multiplicities m:. Moreover, if we find a permutation x of P;+ which commutes 
with both S(") and E " ) ,  then it will be an exact symmetry of both t and m. Piore generally, 
if S(") and E " )  both transform 'nicely' under a permutation x of P;+, then we can expect 
to derive new relations for e and m .  This is the motivation for the following section. 
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4. New relations between multiplicities 

In this section, we will show that symmetries of the Kac-Peterson modular matrices S(") of 
wzw models give rise to new relations between finite-dimensional L$ algebra multiplicities. 

The most obvious symmetry concerns the &ne Weyl group W of 2. We know [14] 
that it is isomorphic to the semi-direct product of the (finite) Weyl group W with the group 
of translations in the co-root lattice Q". We also know that the W-orbit of any weight 
intersects P; in exactly one point. More precisely, let A E M be some weight. Then an 
element 01 exists in the co-root lattice of g. and some w E W ,  such that 

[A] := w(A+n01) E PT. (4.1) 

We will use this observation throughout this section. [A] is uniquely determined by i (and 
n), but w will be only if [A] E P;+. Define €(A) := 0 if [A] @ P;+, and €(A) := det(w) 
otherwise, where w E W satisfies (4.1). 

We read directly from (3.1) and (3.2). respectively, that 

By the argument which gave us equation (3.10), we find that for any A E P++, p E P$+ 

(4.4) 

Thus for any p E P:+, and any A E P++ with [A - p ]  + p E P:, we get the buncation 

(4.5) 

Roughly speaking, equation (4.5) states that if we know the e for 'large' weights, then we 
know them for 'small' ones. Incidently, if [A - p ]  + p @ P$, then equation (4.5) holds if 
we replace its LHS with a sum similar to that of its RHS. Similar comments hold below if 
n*(A) $ P; in (4.13), or &,(A) @ P$ in (4.17). 

Next, consider the symmetries involving the outer automorphisms of affine Lie algebras 
8, or equivalently, the automorphisms of the atended Coxeter-Dynkin diagrams of g. If 
an outer automorphism is also a symmetry of the unextended Coxeter-Dynkin diagram of 
g, i.e. it fixes the extended node, then it is well known to be an exact symmetry C (a 
conjugation) of both the e and the m: 

(4.6) 

Here we are interested instead in those automorphisms which are. not conjugations. Denote 
such an automorphism by A ,  and the fundamental weights of 2 by mi, with i = 0,1,2, . . . , r .  
There is one of these automorphisms A = Ai for every node of the extended diagram with 
mark ai = 1; Ai will send oo to d. Since 

A(A - noo) = wA(h - noo)  (4.7) 
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with WA an element of the Weyl group W of g, for all A E Pt, we have [15] 

~ f i , ~  = s:",' exp [ - h i  (AOJO) . U ]  det(wA) = s:",' exp[-Z?ri (AOJ') . (U - p)] . 

Similarly 

(4.8) 

E ~ ) ( A u )  = E ~ ) ( u )  exp[-~?ri (AOJO) . (A - p)]  (4.9) 

where ZA denotes the one-to-one map from P;+ to P++ given by 

~ A ( A )  := [A - wa'p] + p . (4.11) 

For fixed g, W A  and hence the map JCA is readily obtained from (4.7+?r,4 will be the identity 
only when A is. For example, for g = su(r + 1) &d A = Ai satisfying Am' = U'+], we 
get 

r+ l - j  det(WA) = and ZA(A) = A + (r 4- 1) 0 . 
From OUT main result (3.10), we immediately find 

(4.12) 

(4.13) 

for any A,  M E P;+. provided ZA(A) E P;. Unfortunately RA will only be a permutation of 
P;+ in the trivial case when A = id, so it is not easy to see what equation (4.13) directly 
implies for the m,'. 

There are also Galois symmetries of the Kac-Peterson modular matrix S("), first 
discovered in [16,17] (and generalized to all rational conformal field theories in [IS]). The 
S?/F, and EP)(u)  are polynomials with rational coefficients in a primitive (nN)th root 
of unity, where N = IM*/M14, M here being the weight lattice of g. So, any polynomial 
relation involving them and rational numbers only, will also be satisfied if this primitive 
(nN)th root of unity is replaced by another. 

Let a be an integer coprime to nN, and let a@(")) denote the Kac-Peterson matrix after 
the primitive (nN)th root of unity is replaced by its ath power (ignoring here the irrelevant 
factor F.). For such a, and for A E P$+, recall the quantities [a i ]  E Pit and €(ah) E { i l l  
defined around (4.1). For each a coprime to nN, the map A H [aA] IS a permutation of 
P;+. From the form of the matrix S("), it is easy to find 

In a similar fashion, we find 

(4.15) 
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where z, denotes the one-to-one map from P;+ to P++ defined by 

Ira@) := [UA - np] + p . (4.16) 

A little work yields 

whenever p E P;+ and A, za (A) E P++ n P;. Here we have used the Verlinde formula [ 111 
given in (3.12) for the fusion coefficienrs N E  ". Let NF) denote thefusion mtrk defined 
by (A'?)); := N(") hfi " ' The matrix A':;] will always be invertible [18], so equation (4.17) 
tells us that for any fixed A E P++, the values en& will be known once the lA- are known, 
and conversely, provided a and n satisfy the usual conditions. Equation (4.17) can also be 
interpreted as an expression for the fusion matrices N& in terms of the e and the m. 

It is again difficult to express this Galois symmefzy directly at the level of the 
multiplicities mip themselves. But if no is a permutation of P;+, we get from (4.17) 
that 

A special case of (4.17) occurs when [up] = p .  (More generally, a similar simplification 
happens whenever [up] = A p  for some outer automorphism A.) Then <(up) = +A) for 
all A E P;+ (apply equation (4.14) with p = p. together with the fact that SE) > 0 for all 
U E P;+). Equation (4.17) reduces to 

(4.19) 

For example this happens whenever a = -1, and we get an example of (4.6). 
Similarly, suppose [up] = Ap,  for some outer automorphism A. Then provided 

A, za(A) E P++ n P;, equation (4.17) reduces to 

(4.20) 

Another noteworthy special case of (4.17) involves those weights A' with the property 
that eA? = S& for all p E P++. i.e. those A' for which A' - p is a miniscule weight. For 
SU(T -I- I), they are the fundamental weights 1' = mi -I- p .  Then for any A E P 2  with 
%(A) = A '  

(4.21) 

if, as usual, a is coprime to nN and A', p E P$+. The fusions involving the fundamental 
weights wi + p are easy to compute, so the RHS of (4.21) can be explicitly evaluated in 
all cases. One of the reasons equations (4.17H4.21) could be interesting is because they 
suggest the rank-level duality that wzw' fusions satisfy [19] could appear in some way in 
the E and the m. 
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5. Examples: the case of g = su(3) 

For concrete illustrations of our results, we will focus on the example of g = su(3). The 
comments in this section can be extended to any su(r + 1) without difficulty. 

Consider first equation (4.13). It reduces to 

provided only that: PI + pz < n; Az, pl.  p2 > 1; and either AI + A2 < n,  A I  > 3, or 
A ,  + A 2  < n, AI > 3. 

Equation (5.1) is very powerful. For example, suppose A I  > 3. Put n = AI  + A2 + 1. 
Then equation (5.1) reduces tf to e;‘, where A‘ = (4, Az). In fact, if both AI, A2 2 3 and 
p E P++. from (5.1) (once we compute the values of we obtain 

+I  i f p E  {A, (AI -3,Ad. ( ~ , A z - ~ H  

e&& = { -1 if p E { ( A I -  2, A2 + i), (Al + irh2 - z) ,~  (Al - 2, Az - 2 ) )  . (5.2) 

0 otherwise. 

In fact, using equation (4.5), we find that equation (5.2) gives the correct value of lAP for 
any A,  p E P++ (whether or not AI > 3), with one exception: e&) = -2 # 0, 

Next, let us turn to the Galois symmetries. It is not difficult to see that [ap] = p only 
for a = i l  (mod n),  in which case &(A) = ZA(A) for some outer automorphism A. Thus 
for g = su(3), equation (4.19) only gives information also obtainable from (5.1). 

However, equations (4.17), (4.20), (4.21) are very powerful here. To give one explicit 
example, consider A = (4.41, a = 5, n = 8. Then rr.A = (2,2). The only possible non-zero 
elements of 1, are e(::) = 1 and e&). We get from (4.17) that, for example, 

Note that the relations (4.5), (4.13) and (4.17), together with the selection rule ‘eA” # 0 
requires A-p E Z ~ { U I ,  . . . , U,)’, and the normalization = 1, easily determine all values 
of l,)L and hence mf. In particular, we have seen that equations (4.5) and (4.13) determine 
all e Ir provided the values are known. uatlon (5.3) fixes all values of except 
.t($p, but by equation (5.1) we find e($;’ = $i;)’= 0. A similar conclusion should apply 
to any su(r + 1). 

6. Conclusion 

Our main result is expression (3.10) for the inverse of the matrix of dominant-weight 
multiplicities, in terms of the Kac-Peterson modular m a ~ x  S(”) and the even Weyl orbit 
sums Ef’(cr) .  Surely the even Weyl orbit sums will find other uses in the study of wzw 
models and affine Kac-Moody algebms. 

Also obtained were relations (4.3, (4.13) and (4.17) between the ‘inverse multiplicities’ 
tf, that are consequences of the symmetries of the Kac-Peterson matrices and the E f ’ ( v ) .  
Relations between the dominant-weight multiplicities m,” follow in certain cases, as 
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equation (4.18) shows. These relations would be difficult to understand from the point 
of view of Lie groups and their semi-simple Lie algebras only, but are quite natural in wzw 
models, or in their affine Kac-Moody current algebras. The new relations arise because the 
semi-simple symmetry algebra of a W z w  model is a special subalgebra of its affine current 
algebra. The affine Weyl and outer automorphism symmetries are especially natural in the 
Kac-Moody context. Perhaps the Galois symmehies can be better understood in terms of 
affine Kac-Moody algebras. 

The debt we owe to the previous work of Patera and Sharp 1121 is obvious when 
comparing sections 2 and 3. We should also mention a paper by Moody and Patera [20]. In 
it class functions of an arbitrary semi-simple compact Lie group are decomposed into sums 
of irreducible characters. The method uses the characters of elements of finite order (EFOs) 
of the group to approximate the characters of arbitrary elements. These characters of the 
EFOS have a marked similarity to the Kac-Peterson ratios x?'(o). Moody and Patera also 
use modular arithmetic to ensure that the approximation leads to the correct answers, if a 
suitable set of EFOS is chosen. In a similar way, we automatically recover the exact weight 
multiplicities from the Kac-Peterson ratios, which are the Lie algebra characters evaluated 
at special points. 

Further comparison with [ZO] is clearly warranted. Perhaps it will help us toward a 
better understanding of wzw models, one that approaches the current understanding of 
semi-simple compact Lie groups and their algebras. 
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